长石在高温高压条件下的物理化学行为

刘曦1,2 胡张立1,2 邓力维1,2
LIU Xi1,2, HU ZhangYi1,2 and DENG LiWei1,2

1. 北京大学造山带与地壳演化教育部重点实验室, 北京 100871
2. 北京大学地球与空间科学学院, 北京 100871
1. Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Peking University, Beijing 100871, China
2. School of Earth and Space Sciences, Peking University, Beijing 100871, China
2009-06-16 收稿，2010-11-11 改回。

Abstract As one of the most important minerals in geology, feldspar might enter the deep interior of the Earth via slab subduction process. Consequently, its phase relations and physical-chemical behaviors at high pressures could be very significant to the geodynamic process of the Earth's interior. Here we summarized in some phase diagrams all known high pressure-high temperature experimental data about feldspars with various compositions. These phase diagrams evident that a full picture about feldspar at high pressure is still unavailable, so that further high-pressure experimentation is necessary. Additionally, we briefly reviewed the available physical properties of the high-pressure phases derived from the feldspar compositions, and integrated them into pressure-density profiles which were subsequently compared to the pressure-density profile of pyrolite. The comparison suggested that the density of the different high-pressure phase assemblages for the feldspar compositions is larger than that of the pyrolite for the pressure interval of ~5 to 23GPa, leading to positive sinking into the upper mantle of the Earth.

Key words: Geodynamic process; Feldspar; High P-T; Phase diagram

摘 要 长石是地学上非常重要的矿物之一。它有可能随着板块俯冲而进入地球深部, 因此它在高温高压条件下的相行为以及物理化学性质对地球深部地球动力学研究非常有意义。本文总结了长石端员包晶(钠长石)以及其固溶体系列已知的高温、高压实验数据, 并制图成图。已有的研究成果显示，这三种端员包晶在高压下的相行为有较大差异, 并产生了许多只在高温高压条件下稳定的相如 K-Holl-Ⅰ, K-Holl-Ⅱ, CF, CAS 及 CaPy 等。由于这些相或相间不均相在约 5 ~ 23GPa 的压力范围内超过地幔岩石的密度, 因此这些相组合可以主动俯冲到地幔的深处。另一方面, 已有研究表明, 这些高压相对高硅长石及碱性长石在地幔中的赋存状态有着非同寻常的影响。

关键词 地球动力学过程; 长石; 高温高压; 相图

中图法分类号 P589.1

1 引言

长石 (Pl; 表 1; (Na, K), Ca1−x, Al2−y, Si2+y, O8, 其中 0 < x < 1) 是地球深部中丰度最大的矿物 (Deer et al., 1992)。它有三个端员相, 分别为钾长石 (KAlSi3O8; Or)、钠长石 (NaAlSi3O8; Ab) 和钙长石 (CaAl2Si2O8; An)。这三种端员相在高温下能形成两个完全类质同相系列, 分别为钠长石-钠长石组成的碱性长石系列及由钠长石-钠长石组成的斜长石系列。虽然钠长石和钙长石的互溶性随着温度的升高以及压力的增大而增大, 但这两个端员相很可能不能形成完全的类质同相系列 (Ai and Green, 1989; Nekvasil and
表1 文中符号及其意义

<table>
<thead>
<tr>
<th>符号</th>
<th>意义</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>压力</td>
</tr>
<tr>
<td>T</td>
<td>温度</td>
</tr>
<tr>
<td>V_{360}</td>
<td>室温压下的体积</td>
</tr>
<tr>
<td>K_{360}</td>
<td>室温压体积模量</td>
</tr>
<tr>
<td>K'_{360}</td>
<td>室温压体积模量的对压力的一阶偏导</td>
</tr>
<tr>
<td>K''_{360}</td>
<td>室温压体积模量的对压力的二阶偏导</td>
</tr>
<tr>
<td>Pl</td>
<td>斜长石</td>
</tr>
<tr>
<td>San</td>
<td>透长石</td>
</tr>
<tr>
<td>Or</td>
<td>正长石</td>
</tr>
<tr>
<td>Ab</td>
<td>二长石</td>
</tr>
<tr>
<td>An</td>
<td>顽辉石</td>
</tr>
<tr>
<td>WD</td>
<td>岩石结构的体结构</td>
</tr>
<tr>
<td>Ky</td>
<td>黄长石</td>
</tr>
<tr>
<td>Qz</td>
<td>白云母</td>
</tr>
<tr>
<td>Coesite</td>
<td>鳞片石</td>
</tr>
<tr>
<td>St</td>
<td>石英</td>
</tr>
<tr>
<td>CaSiO_{3}</td>
<td>氧化钙矿物的石英</td>
</tr>
<tr>
<td>K-Holl-I</td>
<td>hollandite-structure NaAlSi_{3}O_{8} & 二长石结构的 KAlSi_{3}O_{8}</td>
</tr>
<tr>
<td>K-Holl-II</td>
<td>KAlSi_{3}O_{8} & deformed hollandite structure & 二长石结构的 KAlSi_{3}O_{8}</td>
</tr>
<tr>
<td>Na-Holl</td>
<td>hollandite-structure NaAlSi_{3}O_{8} & 二长石结构的 NaAlSi_{3}O_{8}</td>
</tr>
<tr>
<td>Leu</td>
<td>leucite</td>
</tr>
<tr>
<td>Jd</td>
<td>jadeite</td>
</tr>
<tr>
<td>Kal</td>
<td>kalsilite</td>
</tr>
<tr>
<td>CF</td>
<td>calcium ferrite-structured NaAlSiO_{4} & 铁酸钙结构的 NaAlSiO_{4}</td>
</tr>
<tr>
<td>Gr</td>
<td>grossular</td>
</tr>
<tr>
<td>CAS</td>
<td>CaO, Al_{2}O_{3} & SiO_{2} - rich phase & 富钙铝及硅的相</td>
</tr>
<tr>
<td>CaPv</td>
<td>calcium perovskite</td>
</tr>
<tr>
<td>Cor</td>
<td>corundum</td>
</tr>
</tbody>
</table>

Carroll, 1993; Liu and O’Neill, 2004）。地质体中常见的长石为三元长石（Deer et al., 1992），其三个晶端组分在较高温度-压力条件下的互溶性示于图1中。

长石的结构比较复杂，主要受成分、结晶条件及后期经历的热历史等因素所控制。长石主要属于两大晶系：单斜晶系（或单斜晶系）及三斜晶系（Deer et al., 1992）。然而不管其具体晶系是什么，所有长石晶体的主要晶体框架是一样的；两个晶系之间的区别主要来源于大离子 K^+ 和小离子 Na^+ 之间的差别（Bragg et al., 1965）。

地壳物质可经深熔作用而进入地球深部，重新经历高温高压环境，参与地球深部的物质、能量循环（Dupre and Allegre, 1983; Sobolev and Shatsky, 1990; Ringwood, 1994; Hofmann, 1997）。由此可见，地壳中长石等富硅富铝矿物在高温高压条件下的相变化，以及由此而产生的一些新相的物理化学性质可能直接影响到地球深部的动力学过程。另一方面，碱性长石是钾元素在地球中最主要的赋存形式，而^{40}K 的放射性衰变是地球早期演化过程中的重要热源

Carroll, 1993; Liu and O’Neill, 2004）。

图1 三元长石相图(据 Deer et al., 1992) 。曲线左侧区域为不同温度压力条件下三元长石混溶区。

Fig.1 Phase diagram for ternary feldspar (after Deer et al., 1992)

(Wasserburg et al., 1964; Yukutake, 2000)，而且现在仍有可能在地球内部发挥着未知的作用。因此，相关的高温高压实验研究有着非常重要的地学意义。以外，科学家们常常在陨石中观察到，长石等矿物因冲击变质作用而发生相变，形成了一些罕见的高压矿物相（Mori, 1994; Gillet et al., 2000; Tomioka et al., 2000; Xie et al., 2001a, b; Kimura et al., 2003; Ohtani et al., 2004）。因此，长石在高温高压条件下的物理化学行为对研究天体碰撞、陨石形成、以及太阳系早期演化也具有重要意义。

由于意义重大，长石在高温高压条件下的物理化学行为一直是实验岩学家和矿物物理学家们的重要研究对象（如 Ringwood et al., 1967; Reid and Ringwood, 1969; Kinomura et al., 1975; Liu, 1978, 1987; Yamada et al., 1984; Zhang et al., 1993; Yagi et al., 1994; Urakawa et al., 1994; Tuttil et al., 2001; Sueda et al., 2004; Akagi et al., 2004; Nishiyama et al., 2005; Ferroir et al., 2006; Liu et al., 2006; Yong et al., 2006, 2008; Tutti, 2007; Liu et al. & Gorsey, 2007; Hira et al., 2008; Mothkerjee and Steinle-Neumann, 2009; Caracas and Boiff Ballaran, 2010; Deng et al., 2010）。本文对近几十年的有关长石的静态或准静态高温高压实验研究进行了总结，绘制了长石各晶端组分及碱性长石系列的高温高压相图，并探讨了它们在高温条件下形成的新相的性质及地质意义。

2 钾长石在高压下的相行为

通过大量的高温高压实验研究，钾长石在高温高压条件下的相行为目前已较为清楚（图2）。透长石（San）在 0 ~ 5GPa 的压力区间内一直稳定；然而，它分解为一个三相组合
图 2 钾长石的 P-T 相图

Fig. 2 P-T phase diagram of KAlSi₃O₈

（Kinomura et al., 1975; Liu, 1987; Ura kawa et al., 1994; Yagi et al., 1994）; KSi₂O₆（钾钙铝硅石结构; Wd; 表 1）+ 蓝晶石（Al₂SiO₅; Ky）+ 石英（SiO₂; Coe）。有意思的是: 在 9GPa 左右的压力下, 这个三相组合又反应生成了一个单相组合——锰镁钠结构的 KAlSi₃O₈ (K-Holl-I) (Kinomura et al., 1975; Liu, 1987; Ura kawa et al., 1994; Yagi et al., 1994)。1993 年, Zhang et al. 利用单晶 X-Ray 衍射方法对 K-Holl-I 进行了常温下的状态方程的精细研究; 在此基础上他们推测: 在比较高的压力条件下, K-Holl-I 结构将变得不稳定, 可能会由四方晶系变为单斜晶系。虽然这一预测没有在随后的常规淬火实验中观察到 (Tutti et al., 2001), 但是被后来的原位同步放射高温高压实验所证实 (Sueda et al., 2004; Nishiyama et al., 2005; Fer roir et al., 2006); 在 25GPa 左右, 锰镁钠结构的 KAlSi₃O₈ (K-Holl-I) 转变为单斜镁钠结构的 KAlSi₃O₈ (K-Holl-II; 表 1)。同时, 原位同步放射高温高压实验观察到了一个非常有意思的现象: K-Holl-II 的晶体结构在加压过程中会变成 K-Holl-I 的晶体结构; 这很好地解释了为什么在常规淬火实验中没能观察到 K-Holl-II。最新的实验研究表明: K-Holl-II 可以一直稳定到 128GPa, 相当于地球边缘的压力 (Hirao et al., 2008)。

通过热力学计算, Akaogi et al. (2004) 及 Yong et al. (2006) 研究了 San 与 Wd + Ky + Coe 之间的相变, 以及 Wd + Ky + Coe 与 K-Holl-I 之间的相变 (图 2)。他们的计算结果与 Ura kawa et al. (1994) 及 Yagi et al. (1994) 等的高温高压实验结果在温度比较高时吻合得非常好; 但在温度较低时 (比如 1000°C 以下), 两种方法得出的结果有一定偏差; 计算得出的相变压力比实验中直接观察到的压力都要低一些。这可能是由于温度较低时化学反应速度慢所导致的。另一方面, 热力学计算表明, 在温度低于约 1000°C 时, Wd + Ky + Coe 可能先转变为 Wd + Ky + St, 然后才是 K-Holl-I (Tutti et al., 2004; Yagi et al., 2006)。这一现象虽然在较早的高温高压实验中没有观察到, 但是已经被 Akaogi et al. (2004) 的实验所证实。Fas hauer et al. (1998) 对 San 与 Wd + Ky + Coe 之间的相变也进行了一定的热力学研究。他们认为 San 可能先分解为 Kalsilite (KAl₂Si₂O₈; Kalsilite, 1960; Liu, 1978; Holland, 1980); 随后, Jd + Qz 组合在约 3 GPa 的条件下被 Jd + Coe 取代; 在约 9.5GPa 的条件下, Jd + Coe 组合被 Jd + St 组合取代, 后者一直稳定到约 23GPa。在压力约为 23GPa 时, 硬玉将分解生成具铁酸钙结构的 NaAlSiO₄ (CF; 表 1) + St (Liu, 1978; Yagi et al., 1994), 从而形成 CF + St 相组合。该相组合可以一直稳定到至少 75GPa (Tutti et al., 2000; Huang)。斯石英的进一步相变。如果忽略与 SiO₂ 有关的相变, 钠长石在高压下的相转变是简单明了的; 整个相变过程中就是随着压力的升高, NaAl₂Si₃O₈ 通过逐渐失去 SiO₂ 而转变为 NaAlSiO₄ 及 NaAlSiO₄ 的过程。

3 钠长石在高压下的相行为

钠长石 (NaAl₂Si₃O₈) 在高温高压下的相行为已经研究得比较清楚 (图 3)。钠长石在约 2.5GPa 的条件下分解为硬玉 (NaAl₂Si₂O₈; Jd) + 石英 (SiO₂; Qz) (Birch and Le Comte, 1960; Liu, 1978; Holland, 1980); 随后, Jd + Qz 组合在约 3 GPa 的条件下被 Jd + Coe 取代; 在约 9.5GPa 的条件下, Jd + Coe 组合被 Jd + St 组合取代, 后者一直稳定到约 23GPa。在压力约为 23GPa 时, 硬玉将分解生成具铁酸钙结构的 NaAlSiO₄ (CF; 表 1) + St (Liu, 1978; Yagi et al., 1994), 从而形成 CF + St 相组合。该相组合可以一直稳定到至少 75GPa (Tutti et al., 2000; Huang)。斯石英的进一步相变。如果忽略与 SiO₂ 有关的相变, 钠长石在高压下的相转变是简单明了的; 整个相变过程中就是随着压力的升高, NaAl₂Si₃O₈ 通过逐渐失去 SiO₂ 而转变为 NaAlSiO₄ 及 NaAlSiO₄ 的过程。

图 3 钠长石的 P-T 相图
图中实线来源于高温高压实验,虚线来源于外推. 反应 1 为 Ab →Jd + Qtz (Bohren and Böttcher, 1982); 反应 2 (Jd + Qtz →Jd + Coe) 实际上是 Qtz/Coe 的转变反应 (Bohren and Böttcher, 1982); 反应 3 (Jd + Coe →Jd + St) 实际上是 Coe/St 的转变反应 (Zhang et al., 1996); 反应 4 (Jd + St →CF + St) 实际上是与反应 Jd →CF + St 等价 (反应线 4a 来自 Yagi et al., 1994; 反应线 4b 来自 Tutti et al., 2000)

Fig. 3 P-T phase diagram of NaAlSi₃O₈

图 4 钾长石-钠长石系列在不同温度下的 P-X 相图

Fig. 4 P-X phase diagrams of KAl₂O₃-NaAlSi₃O₈ system at different temperatures

组合一致。如果所研究的成分中钠较多, 超过了 K-Holl-II 或 K-Holl-II 的溶解能力, 那么 Jd 就会出现, 这样所导致的结果是 SiO₂ 过剩 (以 St 的形态出现); 因此, 富钠组分在高压下的相组合基本上与 NaAlSi₃O₈ 成分的相组合一致。

值得注意的是, 以上提到的针对钾长石-钠长石系列的高温高压实验还都是在大压机上进行的常规淬火实验, 有关实验结果的正确性还需要通过原位的观测来检验。因为大压机上高压实验的减压过程相对较长, Na-Holl 通常在高压下稳定存在, 但在减压过程中分解成 Jd + St 的可能性 (尽管这种可能性是非常的小)。

4 碱性长石系列在高压下的相行为

从以上两小节的论述可以看出, 钠长石成分与钠长石成分在高压条件下的相关系是完全不一样的, 如何将二者连成一个整体需要就钾长石-钠长石系列中的相关成分进行高温高压实验。

Yagi et al. (1994) 及 Liu (2006) 针对钾长石-钠长石系列进行了大压机实验, 实验结果总结在图 4 中。如果不考虑 K-Holl-II 结构在减压过程中会变回到 K-Holl-I 结构这一因素 (Sueda et al., 2004; Nishiyama et al., 2005; Ferroir et al., 2006), 在实验误差的范围内, 这两个工作组的研究结果可以说是致的。在 KAl₂O₃-NaAlSi₃O₈ 这个准二元系中, 如果所研究的成分是贫钠的, 那么所有的钠将溶于 K-Holl-I 或 K-Holl-II 中, 其在高压下的相组合基本上与 KAl₂O₃ 成分的相组合一致。如果所研究的成分中钠较多, 超过了 K-Holl-I 或 K-Holl-II 的溶解能力, 那么 Jd 就会出现, 这样所导致的结果是 SiO₂ 过剩 (以 St 的形态出现); 因此, 富钠组分在高压下的相组合基本上与 NaAlSi₃O₈ 成分的相组合一致。

值得注意的是, 以上提到的针对钾长石-钠长石系列的高温高压实验还都是在大压机上进行的常规淬火实验, 有关实验结果的正确性还需要通过原位的观测来检验。因为大压机上高压实验的减压过程相对较长, Na-Holl 通常在高压下稳定存在, 但在减压过程中分解成 Jd + St 的可能性 (尽管这种可能性是非常的小)。

5 钾长石在高压下的相行为

有关钾长石 (CaAl₂Si₂O₈) 在高压下的相行为的实验数据非常少 (Boyd and England, 1961; Gautron et al., 1994, 1996; 图 5)。1961 年, Boyd and England 在他们的水塞-圆筒实验中发现, 钾长石在 3GPa 左右分解为钙铝榴石 (CaAl₂Si₂O₆; Gr) + 蓝晶石 (Al₂SiO₅) + 石英 (SiO₂); 1994 年, Gautron et al. 在他们的 LHDAC 实验中发现, 钾长石在 17.5GPa 左右分解为 Ca(Ca₁₀₃Al₄₃Si₇₃)O₆ (hollandite) + K⁺ + (Ca₉Al₂) (Si₉Al₇)O₆; 1996 年, Gautron et al. 在他们
图 5 钙长石的 P-T 相图
图中实线来自于高温高压实验 (Boyd and England, 1961), 虚线来自于推测 (Lindsay, 1968), 实验证数据点 (实心圆圈) 来自 Gautron et al. (1996). 对于钙长石成分,已被实验确认的高压相组合有 An, Gr + Ky + Qtz 及 Gr + St + CAS; 其中 Qtz/Coe 的转变反应 (反应线 2), Coe/St 的转变反应 (反应线 3) 及 Ky 的分解反应 (反应线 4), Gr + Ky + Coe 组合, Gr + Ky + St 组合及 Gr + Co + St 组合有望得到确认。然而, 由 Gr + Cor + St 怎样变到 Gr + St + CAS 组合, 以及后者在更高压力下怎样变化, 目前是不清楚的。Fig. 5 P-T phase diagram of CaAl2Si2O8

的大压机实验中发现，钙长石成分在 14GPa 左右压力下的相组合为钙铝榴石 (CaAl2Si2O8) + 斯石英 (SiO2) + CAS (CaAl2Si2O11; 表 1)。考虑到石英→柯石英、石英→斯石英、蓝晶石→斯石英、刚玉等反应 (Liu, 1974; Irifune et al., 1995; Schmidt et al., 1997; Oganov and Brodholt, 2000; Liu et al., 2006; Ono et al., 2007; Zhai and Ito, 2008), 上述的实验观察依然很难形成一个完整的图像; 而且, 目前已有的实验数据覆盖的温度-压力区间也还非常有限。最近, Liu et al. 针对这一系统进行了高温-高压实验研究, 给出了压力达 30GPa, 温度达 2500℃的相图 (论文准备中)。

6 K-Holl-I, K-Holl-II, CF 及 CAS 等高压相的性质
6.1 K-Holl-I 高压相的性质
1967 年, Ringwood et al. 首次合成了 K-Holl-I, 并给出了其晶体结构 (图 6-1 及 6-2): 14/m, a = 9.38 Å, c = 2.74 Å。

K-Holl-I 中的硅、铝都是六次配位, 与氧形成硅 (铝) 氧八面体——(Si, Al)O6, 硅、铝可以完全等效替换 (也就是说, 硅、铝的占位完全无序); 硅 (铝) 氧八面体通过共棱 (O1-O1) 形成与 e 轴平行的双链, 其中每条链上的硅 (铝) 氧八面体共顶点; 四条双链通过共用顶点而组成一个与 e 轴平行的大隧道 (在垂直 e 轴方向为一方格子; 图 6-2); K+ 就位于该隧道中, 通过 8 个 O2- 而与硅 (铝) 氧八面体相连 (KOH; Ringwood et al., 1967)。1984 年, Yamada et al. 给出了 K-Holl-I 的晶体参数, a = 9.3244 ± 0.0004 Å 及 c = 2.7227 ± 0.0003 Å; 同时他们指出, K+ 与硅 (铝) 氧八面体之间的 8 个键为两种, 其中 4 个键的平均键长为 2.80 Å, 另 4 个键的平均键长为 3.1 Å。1993 年, Zhang et al. 给出的 K-Holl-I 的晶体参数为 a = 9.315 ± 0.004 Å, c = 2.723 ± 0.004 Å。

Zhang et al. (1993) 以单晶 XRD 的实验手段研究了 K-Holl-I 从常压到 4.47 GPa 的晶体结构变化, 并确定了 K-Holl-I 在 300K 下的等温状态方程 (Birch-Murnaghan Equation of State) 的参数; 当固定体积体积模量的对压力的一阶偏导 (K''0,0 = 4) 及体积模量 (V''0,0 = 236.26 ± 0.26 Å3)

图 5 K-Holl-I 及 K-Holl-II 的晶体结构对比
数据来自作者未发表的第一原理计算; 该计算以 Zhang et al. (1993) 中的数据作为结构优化的初始参数。Fig. 6 A comparison of the structures of K-Holl-I and K-Holl-II
时，所得出的零压体积模量为 \(K_{300,0} = 180 \pm 3 \) GPa；如果只固定 \(K_{300,0} = 4 \) 但不固定 \(V_{300,0} \)，所得出的 \(K_{300,0} = 191 \pm 6 \) GPa。最近，Nishiya et al. (2005) 及 Ferrero et al. (2006) 进一步研究了 K-Holl-I 的状态方程。Nishiya et al. (2005) 中的实验条件为压力 15 ~ 27 GPa, 温度 300 ~ 1800K，他们确定的状态方程参数为：\(K_{300,0} = 183 \pm 3 \) GPa (\(K_{300,0} \) 固定为 4)，\(V_{300,0} = 237.6 \pm 0.2 \) Å\(^3\)，\((dK/dP)/T \) = 0.033 ± 0.002 GPa/K，\(a_0 = 3.32 \pm 0.05 \times 10^{-5} \) K\(^{-1}\)；\(b_0 = 1.09 \pm 0.01 \times 10^{-3} \) K\(^{-2}\)；\(a_0 \) 和 \(b_0 \) 是常压下热膨胀系数的两个参数（\(a_0 = a_0 + b_0 T \)）。

Ferrero et al. 在 2006 年的研究中报道：如果固定 \(K_{300,0} = 4 \)，但不固定 \(V_{300,0} \)，所得出的 \(K_{300,0} = 201.4 \pm 0.7 \) GPa。

6.2 K-Holl-II 高压相的性质

大约在压力为 23 GPa 时，K-Holl-I 相变为 K-Holl-II (Sueda et al., 2004)；晶胞参数 \(a \) 开始分裂成一长 (\(a \)) 一短 (\(b \))，而且 \(\gamma \) 不再是 90°，晶系由四方晶系变为单斜晶系 (Ferrero et al., 2006)。由于在 23 ~ 30 GPa 的压力范围内 K-Holl-II 的有关参数如 \(a/b \) 及 \(\gamma \) 等随压力连续变化，再加上相变本身也没有导致晶胞体积的突变，Ferrero et al. 认为从 K-Holl-I 到 K-Holl-II 的相变为二级相变。

K-Holl-II 的晶体结构相当复杂（图 6-1）。二者的主要不同之处在于由四组八面体双链（共棱）组成的平行于 \(c \) 轴的长隧道的形状（图 6-2 及 6-3）；在垂直于 \(c \) 轴的方向，K-Holl-I 中的隧道为正方形，而 K-Holl-II 中的隧道则为压扁了的菱形（128 GPa 压力下，\(a/b = 1.11288 \pm 0.0006 \); Hirota et al., 2008)。二者的不同之处表现为：

- K-Holl-I 的 \(\gamma = 90° \) 而 K-Holl-II 的 \(\gamma = 93.57 \pm 0.03° \)（压力为 128 GPa）；
- Hirota et al., 2008）。

2008 年，Hirota et al. 对 K-Holl-II 的相变性质进行了研究。他们的结果表明：如果固定 \(K_{300,0} = 4 \)，但不固定 \(V_{300,0} \)，所得出的 \(K_{300,0} = 232 \pm 14 \) GPa。他们观察到的一个特别有趣的现象是：K-Holl-II 结构中的 KO\(_2\) 多面体比 (Si, Al) O\(_6\) 八面体更容易压缩；在 K-Holl-I 结构中，(Si, Al) O\(_6\) 八面体比 KO\(_2\) 多面体更容易压缩 (Zhang et al., 1993)。虽然 K-Holl-II 结构中 KO\(_2\) 多面体变得较容易压缩，但是 K-Holl-II 可以一直稳定到至少 128 GPa 的压力，这表明其结构中与 \(c \) 轴平行的隧道一直还是比较稳定的 (Hirota et al., 2008)。

6.3 CF 高压相的性质

具有 NaAlSiO\(_4\) 成分的 CF 相最早由 Liu 于 1977 年从霞石 (NaAlSiO\(_4\)) 而合成，其结构确定为 CF 结构 (铁酸钙结构)，测定的晶胞参数为：\(a = 10.206 \pm 0.008 \) Å，\(b = 8.740 \pm 0.007 \) Å，\(c = 2.746 \pm 0.002 \) Å。1983 年，Yamada et al. 对 CF 相的结构做了比较详细的工作；他们给出的晶胞参数为：\(a = 10.1546 \pm 0.0008 \) Å，\(b = 8.6642 \pm 0.0008 \) Å，\(c = 2.7385 \pm 0.0004 \) Å。而 Dubrovinsky et al. (2002) 报导的晶胞参数为：\(a = 10.187 \pm 0.003 \) Å，\(b = 8.684 \pm 0.002 \) Å，\(c = 2.7464 \pm 0.0004 \) Å。2003 年，Chen et al. 在随州陨石中发现了具有 CF 结构的铬铁矿的高压多形变，这是第一次在自然界中发现具有 CF 结构的矿物，意义非常重大。

CF 相的结构非常特殊，在某种程度上与 K-Holl-I 的结构很相似 (Yamada et al., 1983; 图 7)。在 CF 相中，所有的硅 (铝) 氧八面体先通过共棱而组成双链，这些双链与 \(c \) 轴平行，其中每条链上的硅 (铝) 氧八面体共顶点；这一点与 K-Holl-I 是完全一样的。CF 相的结构与 K-Holl-I 的结构不同的是：两条相邻的双链的两端与另两条相邻的双链的短边通过共用顶点而组成一个与 \(c \) 轴平行的大隧道 (该隧道在垂直 \(c \) 轴方向近似为一个三角形；图 7-2)；Na\(^+\) 就位于该隧道中，通过 8 个 \(O^2-\) 而与硅 (铝) 氧八面体相连 (NaO\(_4\))。Ringwood (1975) 认为这个大隧道也可以被 Ca\(^{2+}\)，Cu\(^{2+}\)，Mn\(^{2+}\) 或 Mg\(^{2+}\) 等大离子填充。应该指出，由于缺乏单晶 X 射线衍射数据，CF 相的结构还具有一定的不确定性；比如说 Si 与 Al 是否完
全无序(Yamada et al., 1983)。

CF 是已知结构最紧密的钠铝硅酸盐(Liu, 1977);从已有的实验数据来看, 它的稳定压力区间至少为从 24 GPa 到 75 GPa(Liu, 1977; Tutti et al., 2000)。Dubrovinsky et al. 等对该相进行了室温下的状态方程研究, 他们的结果为: \(V_{300,0} = 243.0 \pm 0.1 \text{Å}^3, K_{300,0} = 220 \pm 1 \text{GPa}, K'_{300,0} = 4.1 \pm 0.1 \) (Dubrovinsky et al., 2002)。最近, Guignot 和 Andraut (2004) 也对该相进行了室温下的状态方程研究, 他们的结果为 : \(V_{300,0} = 241.2 \pm 0.3 \text{Å}^3, K_{300,0} = 185 \pm 5 \text{GPa}, K'_{300,0} = 4.6 \pm 0.2 \); 与 Dubrovinsky et al. 的结果差别较大。Ono et al. (2002) 针对含有一定 Mg, Fe 的 CF 相进行了室温下的状态方程研究, 所获得的参数为 (300 K): \(V_{300,0} = 244.1 \pm 0.6 \text{Å}^3, K_{300,0} = 253 \pm 14 \text{GPa} \) 及 \(K'_{300,0} = 3.6 \pm 0.6 \), 或者 \(K_{300,0} = 243 \pm 2 \text{GPa}, K'_{300,0} = 4 \) (固定)。

6.4 CAS 高压相的性质

CAS 相的结构特别, 其中 Si 的配位数可能为 5 (Gautron et al., 1997, 1999; Grey et al., 1999; Beck et al., 2004, 图 8); Si 的配位数一般情况下应该为 4 或 6 等, 为 5 的现象以往只在 CaSiO₃ 晶体中观察到 (Angel et al., 1996)。1997 年, Gautron et al. 确定 CAS 属于六方晶系, 并给出了晶胞参数: \(a = 5.4 \text{Å}, c = 12.7 \text{Å} \)。Grey et al. (1999) 确定了 CAS 为 “R 类六方铁酸盐结构”, 空间群为 P6₃/mmc, 并给出了更精确的晶胞参数: \(a = 5.4228 \pm 0.0001 \text{Å}, c = 12.6933 \pm 0.0001 \text{Å} \)。1999 年, Gautron et al. 报道了它 CAS 相进行的单晶 X 射线衍射的实验数据。对比 Grey et al. (1999) 与 Gautron et al. (1999), 我们不难发现: CAS 相的晶体结构其实还不是很清楚, 例如说 Si 与 Al 的占位问题等; 进一步的研究是非常有必要的。

Ono et al. (2005) 利用 LDHAC 与同步放射技术对 CAS 相进行了压缩实验, 实验压力高达 44 GPa, 所导出的等温状态方程的参数为 (300 K): \(p_{300,0} = 3.888 \text{GPa}, V_{300,0} = 229 \pm 9 \text{GPa}, K'_{300,0} = 4.7 \pm 0.7 \) 或 \(K_{300,0} = 239 \pm 2 \text{GPa}, K'_{300,0} = 4 \) (固定)。

图 8 CAS 的晶体结构(据 Gautron et al., 1999)

Fig. 8 Structure of CAS (after Gautron et al., 1999)

7 讨论

长石有可能随着板片俯冲进入地球内部, 重新经历高温高压环境, 并通过一系列的化学反应而形成许多新的相组合。这些新的相组合可能具有与周围地幔岩 (pyrolite) 完全不同的物理性质 (比如说密度可能不同), 从而对地幔内部的对流活动产生影响。根据表 2 中有关矿物相在室温条件下的状态方程及参数, 我们计算了钠长石成分及钾长石成分在不同压力下的密度 (图 9), 并与大陆地壳成分和地幔岩成分在不同压力下的密度进行了对比; 发现, 由钠长石成分、钾长石成分所形成的相组合分别在压力低于 5 GPa 或 8 GPa 时有着低于地幔岩的密度, 因此它们只能被动地因板片俯冲而进
表 2 密度-压力计算中所用到的状态方程的参数

<table>
<thead>
<tr>
<th>Phase</th>
<th>$V_{300.0}$</th>
<th>$K_{300.0}$</th>
<th>$K_{500.0}$</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aba</td>
<td>664.39 (12)</td>
<td>70</td>
<td></td>
<td>Angel et al., 1988</td>
</tr>
<tr>
<td>Sanb</td>
<td>723.66 (42)</td>
<td>67</td>
<td></td>
<td>Angel et al., 1988</td>
</tr>
<tr>
<td>Jd</td>
<td>402.03 (2)</td>
<td>3 (1) 3.4 (4)</td>
<td></td>
<td>McCarthy et al., 2008</td>
</tr>
<tr>
<td>CF</td>
<td>36.58 (2)</td>
<td>220 (1)</td>
<td>4.11 (1)</td>
<td>Duhrovinsky et al., 2002</td>
</tr>
<tr>
<td>Wd</td>
<td>108.44c</td>
<td>90c</td>
<td>4 (fixed)</td>
<td>Yong et al., 2008</td>
</tr>
<tr>
<td>Ky</td>
<td>292.3 (1)</td>
<td>192 (6)</td>
<td>6 (1)</td>
<td>Liu et al., 2009</td>
</tr>
<tr>
<td>K-Holl-I</td>
<td>237.6 (2)</td>
<td>183 (3)</td>
<td>4 (fixed)</td>
<td>Nishiyama et al., 2005</td>
</tr>
<tr>
<td>K-Holl-II</td>
<td>232 (2)</td>
<td>232 (14)</td>
<td>4 (fixed)</td>
<td>Hirao et al., 2008</td>
</tr>
<tr>
<td>Qz</td>
<td>112.98 (2)</td>
<td>37.12 (9)</td>
<td>5.99 (4)</td>
<td>Angel et al., 1997</td>
</tr>
<tr>
<td>Coee</td>
<td>546.80 (3)</td>
<td>100.8 (5)</td>
<td>1.8 (3)</td>
<td>Angel et al., 2001</td>
</tr>
<tr>
<td>St</td>
<td>46.513 (7)</td>
<td>310 (1)</td>
<td>4.6 (2)</td>
<td>Andraul et al., 2003</td>
</tr>
<tr>
<td>CC-SiO$_2$</td>
<td>46.31 (15)</td>
<td>334 (7)</td>
<td>4 (fixed)</td>
<td>Andraul et al., 2003</td>
</tr>
</tbody>
</table>

a 我们用二级的 Birch-Murnaghan Equation of State 对 Angel et al. (1988) 的压力-体积数据进行拟合，给出的 $K_{300.0}$ 为 59 ± 1 (固定 $V_{300.0}$ 并设定 $K_{500.0} = 4$)，与他们给出的 $K_{300.0}$ 相差较大；原因不详。因此，在相关的密度-压力计算中，我们直接用 Angel et al. (1988) 的压力-体积数据。c 数据最初来自 Swanson and Prewitt (1983)；d 数据最初来自 Gersinger et al. (1987)；e 所用状态方程为三级的 Birch-Murnaghan Equation；室温室压体积增量的对压力的二阶偏导 $K'_{300.0} = 0.57 \pm 0.06$ (Angel et al., 2001)。

入地球内部；当压力更高时，由于 St 或 K-Holl-I 的形成，它们的密度迅速超过地幔岩，从而能够主动地沉入地球内部；但是压力达到约 25 GPa 时，随着地幔岩中钙钛矿结构的 MgSiO$_3$ 的形成，它们的密度会重新小于地幔岩的密度，进一步的主动下沉会变得困难。这些结果与已有的自然岩石成分系内的观察是基本一致的 (Irifune et al., 1994; Wu et al., 2009)。另一方面，图 9 表明；加强地壳物质在地球上地幔及转换带压力下的研究对理解地幔对流非常重要。

地幔岩是以富镁铁、贫铝硅为特征的，大陆地壳中富镁铁的组分如橄榄石等经俯冲作用而进入地幔，从而造成地幔内部主量元素的不均一性；如上所述，这种不均一性是造成地幔对流的一个重要原因。另一方面，长石等的俯冲也会对地幔内部的微量元素分布造成重要影响；这里我们仅以钙钛矿结构的 KAlSi$_3$O$_8$ 为例。不管是 K-Holl-I 还是 K-Holl-II，其结构中的大隧道 (图 6) 可以被某种大离子如 Na$^+$、K$^+$、Rb$^+$、Cs$^+$、Ba$^+$ 及 Sr$^{2+}$ 等填充 (Ringwood, 1975)。这些元素 (除 Na$^+$ 以外) 通常被认为是不相容元素，它们在地幔部分熔融过程中容易进入熔体而不进入上层的作物。加上钙钛矿结构的 KAlSi$_3$O$_8$ 在很大的压力区间内稳定，它因而有可能是地幔中碱金属及碱土金属最重要的赋存矿物；因此，它对于

图 9 室温时 KAlSi$_3$O$_8$、NaAlSi$_3$O$_8$、大陆地壳及地幔岩等成分在低压下的密度对比图

Fig. 9 Density-pressure profiles of compositions KAlSi$_3$O$_8$、NaAlSi$_3$O$_8$，continental crust and pyrolite at room temperature

解释地幔不均一性有着重要的地球化学意义。实验岩石学的证据表明，钙钛矿结构的 KAlSi$_3$O$_8$ 确实是俯冲到地幔深度的地壳物质中的主要组成矿物之一，是钾的主要赋存形式 (Wu et al., 2009; Rapp et al., 2008; Dobzhzhetskaya et al., 2007)。Rapp et al. (2008) 的研究指出：由于钙钛矿结构的 KAlSi$_3$O$_8$ 富集大离子亲石元素和 K、U、Th 等热产热元素，因而对它们的地球化学行为起着主导作用。Rapp 等实验中的钙钛矿结构的 KAlSi$_3$O$_8$ 及来自 EM-1 型地幔源区的 Pitcairn 岛洋岛玄武岩及 Gaussia 钾镁煌斑岩的微量元素配分模式非常相似，从而支持了 EM-1 型地幔源区受到了陆源物质的混染作用的观点。

致谢
谢谢两位匿名论文评审专家的细致工作。谢谢编辑俞良军博士的帮助。

References

of state of stishovite to lower mantle pressures. American Mineralogist, 88: 301 – 307
Angel RJ, Allan DR, Mileitch R and Finger LW. 1997. The use of quartz as an internal pressure standard in high-pressure crystallography. Journal of Applied Crystallography, 30; 461 – 466
Boettcher AL and Wyllie PJ. 1968. Jadeite stability measured in the presence of silicate liquids in the system NaAlSiO₄-SiO₂-H₂O. Geochimica et Cosmochimica Acta, 32; 999 – 1012
Dobzhanskaya LF and Green HW. 2007. Experimental studies of mineralogical assemblages of metasedimentary rocks at earth’s mantle transition zone conditions. Journal of Metamorphic Geology, 25; 83 – 96
Dubrovinsky LS, Dubrovinskaia NA, Prokopenko VB and Le Bihan T. 2002. Equation of state and crystal structure of NaAlSiO₄ with calcium-ferrite type structure in the conditions of the lower mantle. High Pressure Research, 22; 495 – 499
Grey IE, Madsen IC, O’Neill HST, Kesson SE and Hibberson WO. 1999. Rietveld refinement of high-pressure CaAl₂Si₂O₇ with the R-type ferrite structure. Neues Jahrbuch für Mineralogie Monatshefte (3); 104 – 112
Holland TJB. 1980. The reaction albite = jadeite + quartz determined experimentally in the range 600 – 1200°C. American Mineralogist, 65; 129 – 134
Lindsey DH. 1966. Melting relations of KAlSi₅O₁₂; Effect of pressure up to 40 kilobars. Mineralogical Notes, 51; 1793 – 1799
Lindsey DH. 1968. Melting relations of plagioclase at high pressures. New York State Museum and Science Service Memorial, 18; 39 – 46
Liu L. 1977. High pressure NaAlSi₅O₁₂; The first silicate calcium ferrite isotype. Geophysical Research Letters, 4; 183 – 186
Liu L. 1987. High-pressure phase transitions of potassium aluminosilicates with an emphasis on leucite. Contributions to Mineralogy and Petrology, 95; 1 – 3
Liu X and O’Neill HSTC. 2004. Partial melting of spinel lherzolite in the
system CaO-MgO-Al₂O₃-SiO₂-Si₃O₇ at 1.1 GPa. Journal of Petrology, 45; 1339 – 1368

Liu X. 2006. Phase relations in the system KAl₆₃Si₃O₉-NaAl₅Si₃O₉ at high-pressure high-temperature conditions and their implication for metagenesis of lunainite. Earth and Planetary Science Letters, 246; 317 – 325

 Oganov AR and Brodholt JP. 2000. High-pressure phases in the Al₂SiO₅ system and the problem of aluminous phase in the Earth's lower mantle; Ab initio calculations. Physics and Chemistry of Minerals, 27; 430 – 439

 Ono S, Nakajima Y and Funakoshi K. 2007. In situ observation of the decomposition of kyanite at high pressures and high temperatures. American Mineralogist, 92; 1624 – 1629

 Reid AF and Ringwood AE. 1969. Six-coordinate silicon; High pressure stollbrand and hauyne aluminosilicates with the hollandite structure. Journal of Solid State Chemistry, 1; 6 – 9

 Schmidt MW, Poli S, Comodi P and Zanazzi F. 1997. High-pressure behavior of kyanite; Decomposition of kyanite into stishovite and corundum. American Mineralogist, 82; 460 – 466

 Swanson DK and Prewitt CT. 1983. The crystal structure of K₂Si₅Si₃O₁₁. American Mineralogist, 68; 581 – 585

 Wang W and Takahashi E. 1999. Subsolidus and melting experiments of a K-rich basaltic composition to 27GPa; Implication for the behavior of potassium in the mantle. American Mineralogist, 84; 357 – 361

 Wasserburg GJ, MacDonald GF, Hoyle F and Flower WA. 1964. Relative contributions of uranium, thorium, and potassium to heat production in the Earth. Science, 143; 464 – 467

 Yamada H, Matsui Y and Ito E. 1983. Crystal-chemical characterization of NaAl₅Si₃O₁₀ with the CaFe₂O₄ structure. Mineralogical Magazine, 47; 177 – 181

 Yong W, Dachs E, Withers AC and Essene EJ. 2008. Heat capacity and phase equilibria of wadsite-type K₅Si₃O₁₁. Contributions to Mineralogy and Petrology, 155; 137 – 146

 Yukutake T. 2000. The inner core and the surface heat flow as clues to estimating the initial temperature of the Earth's core. Physics of the Earth and Planetary Interiors, 121; 103 – 137

 Zhai S and Ito E. 2008. Phase relations of CaAl₅Si₃O₁₁ at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Physics of the Earth and Planetary Interiors, 167; 161 – 167