Full and ideal mixing behavior between Zr–Wd (K₂ZrSi₃O₉) and Ti–Wd (K₂TiSi₃O₉): evidences from mineral chemistry, X-ray diffraction pattern and Raman spectrum

Linlin Chang, Xi Liu, Chunming Wu, Xiaoyang Liu & Guowu Li
Your article is protected by copyright and all rights are held exclusively by Springer-Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: “The final publication is available at link.springer.com”.

Springer
Full and ideal mixing behavior between Zr–Wd (K$_2$ZrSi$_3$O$_9$) and Ti–Wd (K$_2$TiSi$_3$O$_9$): evidences from mineral chemistry, X-ray diffraction pattern and Raman spectrum

Linlin Chang · Xi Liu · Chunming Wu · Xiaoyang Liu · Guowu Li

Abstract A series of wadeite solid solutions (Wd$_{ss}$) along the join K$_2$ZrSi$_3$O$_9$ (Zr–wadeite, Zr–Wd)–K$_2$TiSi$_3$O$_9$ (Ti–wadeite, Ti–Wd) was synthesized at 2 GPa and 1,200–1,400 °C for 24 h with a piston-cylinder apparatus. The chemical composition data demonstrated that Ti and Zr readily substitute for each other, and a full series of Wd$_{ss}$ exists between the Zr–Wd and Ti–Wd end-members at the P–T conditions of our synthesizing experiments. The volume–composition relationship at ambient P–T conditions did not show any significant deviation from the Vegard’s law, indicating a nearly ideal mixing between the Zr–Wd and Ti–Wd. All the Raman peaks observed at ambient P–T conditions were linearly correlated with the composition, suggesting an almost full structural relaxation for the Wd$_{ss}$. These findings suggest that the complete mixing behavior

Introduction

The potassium zirconium silicate K$_2$ZrSi$_3$O$_9$ was first found in a suite of leucite lamproites from the West Kimberley area of Australia and subsequently named as wadeite by Prider (1939; Zr–Wd hereafter). Later, it was reported in the lamproites from Leucite Hills, Wyoming (Carmichael 1967; Mitchell and Steele 1992), and from Francis, Utah (Henage 1972), and in other potassium-rich rocks from both South Africa and Russia (Mitchell 1995a; Mitchell and Vladykin 1996). Its crystallographic features were investigated by Henshaw (1955; space group $P6_3/m$), and its chemical composition was documented by Carmichael (1967). According to some experimental studies done by Prider (1939), Abraham et al. (1971), Arima and Edgar (1980), Orlando et al. (2000), and Xu et al. (2005), it is thermodynamically stable at least up to 3 GPa. In contrast, the potassium titanium silicate K$_2$TiSi$_3$O$_9$ (Ti–Wd hereafter) was only discovered in the groundmass of the Middle Table Mountain madupitic lamproite from Leucite Hills, Wyoming (Mitchell and Steele 1992). Crystallographically, it shares the same space group with the Zr–Wd (Choisnet et al. 1971; Shumyatskaya et al. 1973). The experimental
study conducted by Gulliver et al. (1998) suggested that the Ti-Wd is stable at least up to 3 GPa as well.

The poikilitic coexisting of the Zr–Wd (atomic Zr/(Ti + Zr) = 0.90–0.96) and Ti–Wd (Zr/(Ti + Zr) < 0.05), observed in the Middle Table Mountain madupitic larnite (Mitchell and Steele 1992), potentially suggests a limited solid solution behavior along the K$_2$ZrSi$_3$O$_9$–K$_2$TiSi$_3$O$_9$ join at some pressure and temperature. However, this phenomenon is compatible neither with the direct experimental observations nor with the characteristics of the crystal structures. At 0.15 GPa and 400 °C, Abraham et al. (1971) successfully synthesized an intermediate member of the isomorphous solid solution series from the Zr–Wd to Ti–Wd (Wd$_{as}$ hereafter). Orlando et al. (2000) further demonstrated the formation of a complete solid solution series from the Zr–Wd to Ti–Wd in a large range of P–T conditions (0.15–3 GPa and 770–1,300 °C).

The crystal structure of the Wd$_{as}$, with its chemical formula as A$_2$BSi$_3$O$_9$ (A = K and B = Ti and/or Zr), is special. In the hexagonal crystal structure, the parallel layers of the three-membered rings (Si$_3$O$_9$) composed of SiO$_4$ tetrahedra (via corner-sharing O1) arrange in an ABAB…stacking sequence along the [001] direction, the isolated and octahedrally coordinated B atoms serve as bridges to link the rings (via corner-sharing O2), and the A atoms occupy the nine-coordinated cage sites between the layers of the rings (Choisnet et al. 1971; Shumyatskaya et al. 1973; Sakai et al. 2000; Xu et al. 2005). Consequently, this crystal structure is quite flexible, and small lattice strain caused by any physical (P–T condition) or chemical (cation substitution) change can be efficiently accommodated by slight adjustment of the structure units, without violating the basic symmetry of the Wd$_{as}$ (Xu et al. 2005). This flexibility, as illustrated by the extensive cation substitution taking place both on the A-sites (A = K, Rb, Cs) and on the B-sites (B = Si, Ge, Ti, Sn, Zr) (Choisnet et al. 1971; Kinomura et al. 1975; Xu et al. 2005), and by the relatively small isothermal bulk modulus and large isobaric thermal expansivity of the K$_2$Si$_3$O$_9$ phase (Chang et al. 2013a; Si–Wd hereafter), which has the space group of P6$_3$/m as well (Swanson and Prewitt 1983), strongly argues for a complete solid solution series along the K$_2$ZrSi$_3$O$_9$–K$_2$TiSi$_3$O$_9$ join.

Since all the crystal structural data reported so far have been limited to the end-members Zr–Wd and Ti–Wd, it is presently unclear whether the intermediate structures are somewhat strained and energetically unfavorable compared to the end-members (Xu et al. 2005). In this study, we attempted synthesizing the solid solutions along the K$_2$ZrSi$_3$O$_9$–K$_2$TiSi$_3$O$_9$ join at 2 GPa by using a piston-cylinder apparatus. We have investigated them for their mineral chemistry characteristics by using electron microprobe, for their volume–composition relationship by using powder XRD, and for their microcrystal structural features by using Raman spectroscopy technique.

Experiment

The starting materials used in our high-P experiments were prepared as following. Two mixtures, aimed at the compositions of the Zr–Wd (K$_2$ZrSi$_3$O$_9$) and Ti–Wd (K$_2$TiSi$_3$O$_9$), were first made by mixing and homogenizing under acetone reagent grade chemicals K$_2$CO$_3$, ZrO$_2$/TiO$_2$, and SiO$_2$ in a molar ratio 1:1:3. Following the experimental steps used by Orlando et al. (2000), these two mixtures were next pressed into pellets with a stainless steel die, then heated to remove CO$_2$ in Pt crucibles at 950 °C for 4 h by using a conventional muffle furnace, and finally synthesized at 1,000 °C in open air for a week. The most of the synthesized materials was finely crushed into powder and checked by a powder X-ray diffractometer (X’Pert Pro MPD system; Cu-Kα1 X-ray radiation), and the rest was processed for examination with a scanning electron microscope (SEM; FEI Quanta 650 FEG) hosted at the School of Earth and Space Sciences, Peking University. The powder XRD data indicated the predominance of the Zr–Wd or Ti–Wd in the product, while the SEM data indicated trace/minor amounts of baddeleyite (Badd; ZrO$_2$) and glass in the Zr–Wd sample, and trace amount of glass in the Ti-Wd sample, in good agreement with the observations made by Arima and Edgar (1980) and Orlando et al. (2000). The resulting two powders were mixed in appropriate proportions and homogenized under acetone to generate the final starting materials later used in the high-P experiments.

The series of Wd$_{as}$, with the chemical formula of K$_2$[Zr$_{1-x}$Ti$_x$]Si$_3$O$_9$ (x being equal to the atomic ratio of Zr/(Ti + Zr) and designed as 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0; Table 1), was synthesized at 2 GPa and 1,200–1,400 °C by using a piston-cylinder apparatus (Depths of the Earth Company Quickpress), newly installed at the High-Pressure Laboratory of Peking University (He et al. 2013). The cell arrangement (frictionless MgO–Pyrex–NaCl assembly) and high-P generating technique used in this study were identical to those used in Liu and Fleet (2009). The starting materials were contained in sealed Pt capsules (external diameter = 2.0, internal diameter = 1.8, and length = 2.5 mm). No special technique was employed in this study to prevent the experimental charge from water contamination. As demonstrated by Liu et al. (2006), the Pt capsule wall is quite open to hydrogen infiltration, so that a small amount of water should have been expected in our experimental charge. To the contrary, we actually took advantage of this small amount of water, which should have accelerated the diffusion process of the cations (especially Zr; Harrison and Watson 1983), and promoted the equilibrium state of our experimental products. The experimental T was measured and controlled with a Pt–PtRh$_{10}$ thermocouple (type S), with any potential P effect on its e.m.f.
Parts of the synthetic products, dug out of the Pt capsules but without any grinding, were characterized at ambient P–T condition by using a single-crystal repeat-rotation diffraction method with a Bruker SMART APEX-CCD area-detector diffractometer hosted by the Crystal Structure Laboratory, China University of Geosciences (Beijing) (Li et al. 2009, 2011). Running conditions of the X-ray diffractometer were Mo–K_α X-ray radiation ($\lambda = 0.71073$ Å), operation voltage of 45 kV and current of 30 mA, data-collecting angle range from 4.5° to 40°, counting time of 60 s, and data-collecting GADDS software (Häming 2000). Using the PeakFit V4.12 software (SPSS Inc.), we analyzed the XRD patterns and obtained the positions of the diffraction peaks 100, 101, 102, 110, 111, 130, 200, 202, 004, 121, 114, 300, 204, 302, 220, 124, 205, 130, 222, 106, 312, 304, 215, 313, 206, 402, 224, 410, 207, 323, and 142, from which the unit-cell parameters of the Wd$_{ss}$ were refined. These data-processing techniques were well

Table 1 Experimental conditions, phases observed, and phase compositions for high-P experiments at 2 GPa

<table>
<thead>
<tr>
<th>Exp #</th>
<th>PKU065</th>
<th>PKU064</th>
<th>PKU063</th>
<th>PKU057</th>
<th>PKU062</th>
<th>PKU060</th>
<th>PKU056</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted x</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>T ($^\circ$C)</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
<td>1,300</td>
<td>1,300</td>
<td>1,300</td>
<td>1,400</td>
</tr>
<tr>
<td>Phases observed</td>
<td>Wd$_{ss}$, Glass</td>
<td>Wd$_{ss}$, Badd, Glass</td>
</tr>
<tr>
<td>Composition of Wd$_{ss}$ (wt%)</td>
<td>SiO$_2$</td>
<td>50.40 (49)d</td>
<td>50.80 (54)</td>
<td>50.30 (24)</td>
<td>48.83 (22)</td>
<td>48.16 (60)</td>
<td>47.44 (39)</td>
</tr>
<tr>
<td></td>
<td>TiO$_2$</td>
<td>22.98 (29)</td>
<td>19.81 (43)</td>
<td>15.79 (36)</td>
<td>10.13 (67)</td>
<td>7.08 (33)</td>
<td>2.51 (23)</td>
</tr>
<tr>
<td></td>
<td>ZrO$_2$</td>
<td>–</td>
<td>3.70 (40)</td>
<td>9.19 (56)</td>
<td>15.95 (64)</td>
<td>19.97 (87)</td>
<td>25.92 (41)</td>
</tr>
<tr>
<td></td>
<td>K$_2$O</td>
<td>26.62 (52)</td>
<td>25.70 (70)</td>
<td>24.72 (55)</td>
<td>25.08 (43)</td>
<td>24.79 (25)</td>
<td>24.13 (45)</td>
</tr>
<tr>
<td>Cations per 9 oxygens</td>
<td>Si</td>
<td>2.98 (2)</td>
<td>3.02 (2)</td>
<td>3.04 (1)</td>
<td>3.04 (1)</td>
<td>3.05 (2)</td>
<td>3.06 (1)</td>
</tr>
<tr>
<td></td>
<td>Ti</td>
<td>1.02 (1)</td>
<td>0.89 (2)</td>
<td>0.72 (2)</td>
<td>0.47 (3)</td>
<td>0.34 (1)</td>
<td>0.12 (1)</td>
</tr>
<tr>
<td></td>
<td>Zr</td>
<td>–</td>
<td>0.11 (1)</td>
<td>0.27 (2)</td>
<td>0.48 (2)</td>
<td>0.62 (3)</td>
<td>0.82 (1)</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>2.01 (4)</td>
<td>1.95 (6)</td>
<td>1.90 (5)</td>
<td>1.99 (4)</td>
<td>2.00 (2)</td>
<td>1.99 (4)</td>
</tr>
<tr>
<td>Total</td>
<td>6.00 (3)</td>
<td>5.96 (5)</td>
<td>5.93 (3)</td>
<td>6.00 (3)</td>
<td>6.00 (3)</td>
<td>5.99 (3)</td>
<td>6.08 (4)</td>
</tr>
<tr>
<td>Observed x</td>
<td>0.00 (1)</td>
<td>0.11 (1)</td>
<td>0.27 (2)</td>
<td>0.51 (3)</td>
<td>0.65 (4)</td>
<td>0.87 (2)</td>
<td>1.00 (1)</td>
</tr>
<tr>
<td>Composition of glass (wt%)</td>
<td>SiO$_2$</td>
<td>63.69 (55)</td>
<td>67.19 (97)</td>
<td>70.74 (4)</td>
<td>63.92 (3)</td>
<td>67.33 (80)</td>
<td>55.35 (34)</td>
</tr>
<tr>
<td></td>
<td>TiO$_2$</td>
<td>15.30 (18)</td>
<td>13.36 (79)</td>
<td>9.83 (13)</td>
<td>14.35 (78)</td>
<td>8.97 (95)</td>
<td>3.70 (50)</td>
</tr>
<tr>
<td></td>
<td>ZrO$_2$</td>
<td>–</td>
<td>0.27 (6)</td>
<td>0.43 (3)</td>
<td>1.22 (9)</td>
<td>1.00 (6)</td>
<td>0.12 (6)</td>
</tr>
<tr>
<td></td>
<td>K$_2$O</td>
<td>8.05 (67)</td>
<td>6.90 (87)</td>
<td>7.11 (25)</td>
<td>7.92 (8)</td>
<td>6.96 (39)</td>
<td>8.00 (45)</td>
</tr>
<tr>
<td>Total</td>
<td>87.04 (26)</td>
<td>87.71 (55)</td>
<td>88.11 (19)</td>
<td>87.41 (98)</td>
<td>84.25 (69)</td>
<td>67.16 (77)</td>
<td>87.95 (75)</td>
</tr>
<tr>
<td>Observed x</td>
<td>0.00 (1)</td>
<td>0.01 (1)</td>
<td>0.03 (1)</td>
<td>0.05 (1)</td>
<td>0.07 (2)</td>
<td>0.01 (1)</td>
<td>1.00 (1)</td>
</tr>
</tbody>
</table>

$^a x = \text{Zr/(Ti + Zr)}$

b Badd, baddelyite; glass, potentially water-rich melt in trace amount

c For every Wd$_{ss}$, 10 EMPA analyses were conducted. All analyses were normalized to 100 wt% before average, and standard deviation were calculated

d Number in the parentheses represents one standard deviation in the rightmost digit

e Usually, 2–5 EMPA analyses were conducted. Results must be viewed as semi quantitative

ignored. After heated for 24 h, the experiment charges were quickly quenched by turning off the electrical power supply to the piston-cylinder apparatus.

Parts of the synthetic products from the high-P syntheticizing experiments were mounted in epoxy, polished with a series of diamond pastes, washed with an ultrasonic washing machine, carbon-coated, and examined with scanning electron microscopy (FEI Quanta 650 FEG) and electron microprobe analysis (EMPA; JEOL JXA-8100) at the school of Earth and Space Sciences, Peking University. The EMPA analytic conditions were as following: accelerating voltage 15 kV, beam current 10 nA, and beam size 5 μm. The instrument was calibrated using a range of mineral standards from Structure Probe, Inc. (synthetic silica, natural rutile, natural sanidine, and synthetic Badd for Si, Ti, K, and Zr, respectively). To obtain an average composition, ten analyses were performed on each sample, and the initial EMPA data were reduced by using the ZAF correction procedure (Table 1).
established and verified in our previous studies (Liu et al. 2009; Chang et al. 2013a).

Raman spectra were collected on polished single crystals of the Wd_{ss} with a confocal micro-Raman system (Renishaw system RM-1000) in a backscattering geometry at ambient P–T condition. Raman signal was excited using the 514.5 nm wavelength of an Ar^{+} ion laser operating at 20 mW. The Raman spectra were recorded with a counting time of 20 s, a data range from 200 to 1,200 cm^{-1}, 1 accumulation, a slit of 50 μm, and a 20× objective. The corresponding spectral resolution was 1 cm^{-1}. For every sample, four Raman analyses were performed on arbitrarily selected large crystals, and the results were much comparable. The Raman data were analyzed for the frequencies of the Raman bands with a Gauss–Lorentzian peak-fitting procedure by using the PeakFit V4.12 software (SPSS Inc.).

Results

Our high-P synthesizing experiments were carried out with broadly similar experimental techniques and P–T conditions to those in Orlando et al. (2000) and produced similar phase assemblages Wd_{ss} + Glass ± Badd (Table 1). As shown by the BSE images in Fig. 1, the Wd_{ss} phase appeared as large subhedral hexagonal-shaped crystals. The glass phase was present as a trace phase in all experimental products. Due to the small size of the glass pockets, extensive and accurate compositional data were not available; judging by the available data, the glass was mostly likely a water-rich fluid phase at the experimental P–T conditions (note the very low EMPA totals; Table 1). The Badd phase occurred as small bright grains, from which extensive and accurate EMPA analyses were not possible as well. We believe that it was generally a reaction residue left from the formation of the Wd_{ss}; ZrO_{2} is a very refractory material, and the diffusion rate of Zr in silicates is usually very low (Harrison and Watson 1983).

The Wd_{ss} compositional data from this study are listed in Table 1 and compared in Fig. 2 with the relevant compositional data obtained in other studies. To disclose the cation substitution mechanism, the Wd_{ss} compositional data from some more complicated composition systems are summarized in Fig. 3. The powder XRD patterns are shown in Fig. 4, with the derived unit-cell parameters of the Wd_{ss} listed in Table 2 and graphically summarized in Fig. 5. The Raman spectra are displayed in Fig. 6, with the details and features of the vibrational modes of the Wd_{ss} listed in Table 3 and graphically shown in Figs. 7 and 8.

Mineral chemistry characteristics

The EMPA data suggested that the Wd_{ss} from our high-P experiments was compositionally homogeneous, with the standard deviation of its Zr/(Ti + Zr) ratio ranging from 0.01 to 0.04 (Table 1). In contrast, the Wd_{ss} from Orlando et al. (2000) was compositionally more scattered (their Figs. 2, 3). In their high-P experiments at 2 GPa and 1,200 or 1,300 °C, the experimental charge was first heated at 1,400 °C for 1 h to promote the diffusion of Zr and then kept at a lower temperature for 6.5–21 h before quenched. As noted by Orlando et al. (2000), this experimental procedure led to Zr-enriched cores for the large Wd_{ss} crystals, and consequently composition scattering. In this study, we ran our experiments at constant temperatures for a long duration (24 h) and obtained more homogeneous Wd_{ss}.

Fig. 1 Electron backscatter images showing the textures of the experimental products synthesized at 2 GPa: a PKU065 (1,200 °C) and b PKU060 (1,300 °C). Wd_{ss}, the wadeite solid solutions along the K_{2}TiSi_{3}O_{9}–K_{2}ZrSi_{3}O_{9} join; Badd, baddelyite; glass, potentially a water-rich vapor phase
With respect to the targeted compositions, the presence of some residual Baddeleyite in our high-P experimental products implied that there must be a Zr shortage in the Wd ss. Two competing factors, the Zr/(Ti + Zr) ratio in the bulk compositions and experimental temperature, clearly made their contributions. The experiments at 1,200 °C (PKU065, PKU064, and PKU063; Table 1) showed that as the Zr/(Ti + Zr) ratio in the bulk compositions increased, the Zr shortage in the Wd ss became more pronounced (Fig. 2a). On the other hand, this phenomenon was much suppressed by a temperature increase, as demonstrated by the relatively small difference between the observed and designed Zr/(Ti + Zr) ratios of the Wd ss at 1,300 °C (PKU057, PKU062, and PKU060; Table 1). Another potential factor was the amount of the contaminant water (or glass; Fig. 1).

Fig. 2 Composition of Wd ss along the K2TiSi3O9–K2ZrSi3O9 join synthesized at 2 GPa: a Zr, Ti or (Ti + Zr) in Wd ss; b Si in Wd ss. Numbers in a indicate our experimental T. Empty symbols, filled symbols, and half-filled symbols in a are for Ti, Zr, and (Ti + Zr) in Wd ss, respectively. In most cases, the error bars are smaller than or equal to the sizes of the symbols. Ideally, the data points should fall on the broken lines in a and b. For comparison, data along the K2TiSi3O9–K2ZrSi3O9 join at 2 GPa from Orlando et al. (2000) were plotted as well.

Fig. 3 Compositional data of Wd ss and Si–Wd from some studies in the literature: a Zr versus (Si − 3); b Ti versus (Si − 3); c (Ti + Zr) versus (Si − 3). Data sources include Mitchell and Bergman (1991; 4 sets of data; West Kimberley and Leucite Hills), Cundari and Ferguson (1991; 1 set of data; West Kimberley), Mitchell and Steele (1992; 3 sets of data averaged from the EMPA data collected from the phase showing bright cathodoluminescence, the phase showing dull cathodoluminescence, and the potassium titanium silicate, respectively; Leucite Hills), Mitchell (1995b; 3 sets of data; high-P experiments on a sanidine phlogopite lamproite), Edger and Mitchell (1997; 7 sets of data; high-P experiments on an SiO2-rich lamproite), Sakai et al. (2000; 1 set of data; a cathode ray tube), Hammond and Mitchell (2002; 7 sets of data; Swartruggens, South Africa). Lines, either broken or solid, are drawn to guide eye.
which was much dependent to the specific details of one experiment, and thus much variable.

Figure 2a indicates that for the Ti-rich bulk compositions \([Zr/(Ti+Zr) < 0.5]\), the Zr shortage in the Wd ss was largely compensated by Ti. Whatever the \([Zr/(Ti+Zr)\) ratio in these bulk compositions is, the number of the Si atoms in these bulk compositions is constant. The compensation of Zr in the Wdss by Ti, instead of by Si, therefore suggests that Ti is relatively easier to substitute Zr than Si is. This is readily understood by the difference in the ionic radii of \(Si^4+ (0.4 \text{ Å})\), \(Ti^4+ (0.605 \text{ Å})\), and \(Zr^4+ (0.72 \text{ Å})\) in the BO\(_6\) octahedra (Shannon 1976).

For the Ti-poor bulk compositions \([Zr/(Ti+Zr) > 0.5]\), Fig. 2a indicates a Ti shortage in the Wd ss, which was much variable.

generally compensated by Si. It is clear that this observation is not in line with the size difference of Si$^{4+}$, Ti$^{4+}$, and Zr$^{4+}$ in the BO$_6$ octahedra. Instead, this phenomenon was presumably caused by the difference in the amounts of Si and Zr available for the Wdss crystallization: The quantity and diffusion rate of Si in these bulk compositions were much larger than those of Zr.

It appears that Si may compete with Ti and Zr for the B-sites of the Wdss. Indeed, the Si cation correspondingly increased from 3 (Fig. 2b) as the total of Zr and Ti cations progressively decreased away from 1 (Fig. 2a). However, a complete solid solution series between Si–Wd and Ti–Wd or between Si–Wd and Zr–Wd probably should not be expected due to the large difference between the ionic radii of SiVI (0.4 Å) and TiVI (0.605 Å), or between SiVI and ZrVI (0.72 Å) (Shannon 1976). Indeed, the SiVI(SiVI + TiVI + ZrVI) ratio on the B-sites of the Wdss observed in this study has been limited to ~0.07 only. In addition, Orlando et al. (2000) observed the coexisting of the Si-Wd and Wdss in one of their experiments along the K$_2$ZrSi$_3$O$_9$–K$_2$TiSi$_3$O$_9$ join (3 GPa and 1,000 °C).

The existing compositional data from some more complicated composition systems are summarized in Fig. 3. Figure 3a divides these data into two groups, one with high Zr and the other with low Zr, and shows no significant substitution between ZrVI and SiVI. The Zr-poor data are further divided into three subgroups (Fig. 3b): Subgroup 1 with Ti > 1, Subgroup 2 with −0.5 < Ti < 1, and Subgroup 3 with Ti < −0.2. The cation substitution mechanism for the data in Subgroup 2 is generally SiVI replacing TiVI in the Ti–Wd, whereas that for the data in Subgroup 3 is most likely TiVI replacing SiVI in the Si–Wd. Further, data from these two subgroups potentially suggest a composition gap between −0.2 < Ti < 0.5 (or −0.5 < (Si − 3) < 0.8). There is only one data in the Subgroup 1 (7 GPa/1,200 °C/6 h; Edgar and Mitchell 1997), indicating a potential cation substitution of SiIV by TiIV. Figure 3c shows the correlation between the variables of (Si − 3) and (Ti + Zr) and demonstrates again the major points already discussed. We can conclude that the mixing between Zr–Wd and Si–Wd is very limited, that between Ti–Wd and Si–Wd is somewhat expanded but still incomplete, and that between Wdss and Si–Wd is probably further expanded slightly but still incomplete.

Figure 3 suggests that TiIV may partially replace SiIV and enter the Si$_2$O$_5$ ring of the Wdss (Fig. 3b), but ZrIV may not (Fig. 3a). This observation is generally in agreement with the differences in the cation radii of SiIV (0.26 Å) and TiIV (0.42 Å), and in the cation radii of SiIV (0.26 Å) and ZrIV (0.59 Å) (Shannon 1976).

In summary, Fig. 2 has demonstrated that a full series of solid solutions exists between the Zr–Wd and Ti–Wd at our experimental P–T conditions. On the contrary, the Si–Wd may not completely mix with either the Ti–Wd or the Zr–Wd, as illustrated in Fig. 3.

Powder XRD patterns

Typical powder X-ray diffraction patterns, collected from our high-P synthetic products, are shown in Fig. 4. All the major peaks can be attributed to the Wdss. Due to the generally low resolution of the XRD data, however, their Rietveld analysis failed, and any fine crystal structure distortion caused by the B-site cation substitution could not be extracted. On the other hand, the XRD data were adequately accurate for the purpose of determining the unit-cell parameters.

The unit-cell parameters of the Wdss derived from these XRD patterns are given in Table 2. From the Ti–Wd to Zr–Wd, the a-axis increases by ~2.2(1)%, the c-axis by ~2.5(1)%, and the volume by ~7.1(2)%, suggesting a slightly larger effect of the B-site cation substitution on the dimension of the c-axis than on that of the a-axis, in agreement with Xu et al. (2005). Anyhow, the c/a ratio of the Wdss remains nearly constant (Table 2), implying that any perturbation to the basic unit-cell shape caused by the B-site cation substitution is largely absorbed by the flexible crystal structure of the Wdss.
The dependence of the unit-cell parameters of the Wdss on the composition is shown in Fig. 5. All the unit-cell parameters strictly follow the Vegard’s law. Additionally, a good linear relation between the unit-cell parameters and the radii of the B-site cation was observed for the Ti–Wd, Zr–Wd, Si–Wd, and Ge–Wd (K₂GeSi₃O₉) by Kinomura et al. (1975) and Xu et al. (2005). We thus conclude that the crystal structure of the Wdss is very flexible indeed.

Raman features of the Wdss

Like Si–Wd, both Zr–Wd and Ti–Wd have the crystal structure of P6₃/m. According to the method of Fateley et
(Chang et al. 1972), the irreducible representation of the vibrational mode symmetry for the space group \(P6_3/m \) is as follows (Chang et al. 2013b):

\[
\Gamma = 8A_g + 6B_g + 6E_{1g} + 8E_{2g} + 6A_u + 9B_u + 8E_{1u} + 7E_{2u},
\]

with \(A_g, B_g, A_u, \) and \(B_u \) being nondegenerate, and \(E_{1g}, E_{2g}, E_{1u}, \) and \(E_{2u} \) being degenerate. Among these optic modes, 22 modes \((8A_g + 6E_{1g} + 8E_{2g})\) are Raman-active, 14 modes \((6A_u + 8E_{1u})\) are infrared-active, and 22 modes are silent. Additionally, there are two acoustic modes \((1A_u + 1E_{1u})\).

Assignment of the 22 Raman-active vibrational modes was done by McKeown et al. (1996; lattice dynamic calculation) and Chang et al. (2013b; first-principles simulation), and general agreement has been achieved. According to Chang et al. (2013b), the \(K \) translation accounts for three Raman modes \((1A_g, 1E_{1g}, \) and \(1E_{2g} \)), the external Si\(_3\)O\(_9\) ring motion (ring rotation and ring translation) accounts for three Raman modes \((1A_g, 1E_{1g}, \) and \(1E_{2g} \)), and the internal...
Si$_3$O$_9$ ring motion accounts for the rest 16 Raman modes. It should be noted that the B-site cation makes no direct contribution to any Raman mode. Taking the Si–Wd as an example, these three groups of Raman peaks are expected to appear in the wavenumber ranges of ~114–137, 92–197, and 249–1,106 cm$^{-1}$, respectively (Chang et al. 2013b).

The Raman spectra of the Wd$_{cl}$ at room P–T condition (Fig. 6) vary systematically with the compositions of the Wd$_{cl}$. For the Zr–Wd ($x = 1$), only 18 Raman peaks were observed in the 50–1,200 cm$^{-1}$ range, with 17 treated as fundamental modes and assigned according to Chang et al. (2013b), and one (~1,056 cm$^{-1}$) treated as a combination mode (A_g 493 cm$^{-1}$ + A_g 563 cm$^{-1}$; for the details, see Table 3). Additionally, three Raman peaks were detected for the Badd phase (Keramidas and White 1974). For the Ti–Wd ($x = 0$), 18 Raman peaks were observed and assigned. For the Wd$_{cl}$ with intermediate compositions, nearly all major Raman peaks could be similarly identified, with a few extra Raman peaks in the 800–1,200 cm$^{-1}$ range observed and potentially explained by a two-mode behavior as proposed in the literature (Hofmeister and Chopelas 1991; Hofmeister et al. 1996).

For an exact two-mode behavior, the Raman spectrum of an intermediate member of a series of solid solutions should be identical to the superposition of the Raman spectra of its two end-members. However, attempting to pair up possible vibrational modes across a series of solid solutions always ended inconclusively due to peak broadening in the spectrum caused by cation substitution (Boffa Ballaran et al. 1999). The Raman spectra of the Ti–Wd and Zr–Wd have been combined in a 50:50 ratio and compared with the Raman spectrum collected from the sample PKU057 (Zr/ (Ti + Zr) = 0.51) in Fig. 7. Remarkable similarity between these two spectra has been observed, indicating the possible role of the two-mode behavior in the Wd$_{cl}$ solid solutions. To illustrate this point, the Raman modes A_g, E_{1g} and E_{2g} in the 800–1,200 cm$^{-1}$ range have been fitted as two peaks [A_g(I) and A_g(II), E_{1g}(I) and E_{1g}(II), and E_{2g}(I) and E_{2g}(II), respectively], with the details listed in Table 3.

The positions of the Raman peaks of the Wd$_{cl}$ series are shown in Fig. 8. Excellent linear correlation between the wavenumber shift and composition has been demonstrated for all the Raman lines.

As the Zr/(Ti + Zr) ratio of the Wd$_{cl}$ increases, the two Raman peaks ascribed to the K translation (1A_g and 1E_{1g}) linearly shift to low wavenumber, suggesting a gradual increase in the K–O bands (Fig. 8a). Indeed, the average bond length of the K–O bonds increases by ~13% from 2.983 to 3.048 Å (Xu et al. 2005).

The three Raman peaks caused by the external Si$_3$O$_9$ ring motion (1A_g, 1E_{1g}, and 1E_{2g}) also linearly shift to low wavenumber as the Zr/(Ti + Zr) ratio of the Wd$_{cl}$ increases (Fig. 8a). This phenomenon nominally suggests that the overall change of the Si$_3$O$_9$ ring should be a gradual volume increase, which is in discrepancy with Xu et al. (2005). According to Xu et al. (2005), the Si$_3$O$_9$ ring appears to shrink both along the (001) plane and normal to the (001) plane, as hinted by the decrease in the Si–O1–Si bond angle (134.0° to 132.8°) and in the average Si–O1 bond length (1.6480 to 1.6295 Å) in the former case, and by the decrease in the O2–Si–O2 bond angle (118.6° to 115.0°) and in the average Si–O2 bond length (1.602 to 1.597 Å) in the latter case. As suggested by Chang et al. (2013b), these three Raman peaks are strongly affected by the K translation motion, so that this discrepancy might abate somewhat. Anyhow, the real reason behind the conflict is currently unclear.

In contrast, the rest Raman peaks caused by the internal Si$_3$O$_9$ ring motion can linearly shift either toward low wavenumber or toward high wavenumber as the Zr/ (Ti + Zr) ratio of the Wd$_{cl}$ increases (Fig. 8b, c), suggesting a subtle and delicate structural adjustment in response to the cation substitution on the B-sites. A full description of this complicated structural adjustment is out of the scope of the present investigation.

Summarily, the almost perfect linear correlation between the peak position and the Zr/(Ti + Zr) ratio of the Wd$_{cl}$ series obtained for all the Raman peaks suggests that the Wd$_{cl}$ structure is quite flexible. Any local structural distortion caused by the cation substitution between Ti and Zr on the B-sites can be efficiently dissipated through out to the rest crystal structural units such as the KO$_9$ polyhedra and Si$_3$O$_9$ rings, leading to the formation of a full series of solid solutions along the join K$_2$ZrSi$_3$O$_9$–K$_2$TiSi$_3$O$_9$.

Discussion

Classified as a cyclosilicate, Zr–Wd actually attains a framework structure made of three-membered Si$_3$O$_9$ rings of SiO$_4$ tetrahedra and ZrO$_6$ octahedra, which are linked via corner-sharing. The K cations occupy the cavities (Henshaw 1955). In analogue to the rigid unit mode analysis proposed by Hammonds et al. (1998, and references therein), no any rigid unit modes exist in the Zr–Wd crystal structure, suggesting that no low-energy distortion involving only rotations of the Si$_3$O$_9$ rings and ZrO$_6$ octahedra is possible. Any deformation of the network, whatever its origin is, must contain a component of the deformation of the Si$_3$O$_9$ rings and ZrO$_6$ octahedra. When the substitution of the Zr cations by Ti cations on the B-sites progresses, the Si$_3$O$_9$ rings and KO$_9$ polyhedra gradually deform, leading to the systematic variations of the Raman peaks as shown in Figs. 6 and 8. This structural relaxation mechanism, fully in agreement with the crystallographic data disclosed by Xu et al. (2005), eventually leads to the
systematic variation of the Raman peaks with the compositional change on the B-sites of the Wd₃⁴, although the BO₆ motions actually make no contributions to the origins of the Raman peaks (Chang et al. 2013b).

Another factor important to the formation of a full solid solution series between the Zr–Wd and Ti–Wd is the relative small cation size difference between the Ti⁺⁺ (0.605 Å) and Zr⁺⁺ (0.72 Å) in the BO₆ octahedra (Shannon 1976), less than 20 %. In contrast, the Si⁺⁺ in a sixfold coordination is too small (0.4 Å). The relative differences between the Si⁺⁺ and Ti⁺⁺, and between the Si⁺⁺ and Zr⁺⁺ in a sixfold coordination are by ~50 % and 80 %, respectively. Eventually, mixing gap exists along the joins K₂Si₃O₇–K₂TiSi₃O₉ and K₂Si₃O₇–K₂ZrSi₃O₉, as suggested in Fig. 3.

Our mineral chemistry data collected from our high-P experimental products have clearly demonstrated the complete mixing between the Zr–Wd and Ti–Wd. Our powder XRD data and Raman data have further suggested that this mixing behavior is almost ideal and consequently may extend to a much wider range of P–T conditions. The major conclusion of the current study is thus in good agreement with the earlier experimental studies (Abraham et al. 1971; Orlando et al. 2000). It follows that the poikilitic coexisting of the Zr–Wd (Zr/(Ti + Zr) = 0.90–0.96) and Ti–Wd (Zr/(Ti + Zr) < 0.05) in the lamproites from the Leucite Hills, Wyoming (Mitchell and Steele 1992), might not indicate a subsolidus unmixing process. Since the Ti–Wd phase (K₂TiSi₃O₇-rich) always occurred along the edges of the Zr–Wd phase (K₂ZrSi₃O₇-rich), as shown by Mitchell and Steele (1992), the texture relationship potentially reflected a sudden compositional change of the magma (that is, it was a signal to the chemical composition variation of the magma rather than to a crystal structural limit). Unfortunately, the supersolidus phase relationship along the join K₂Si₃O₇–K₂ZrSi₃O₉ has not been experimentally established so far.

Acknowledgments We are grateful for the constructive discussions on the Raman spectrum from Sean R. Shieh. We thank Guiming Shu and Bo Zhang for the technique support with the electron microprobe and scanning electron microscopy, respectively. The manuscript was significantly improved because of the constructive comments from two anonymous reviewers. We thank Dr T. Tsuchiya for processing this paper. This investigation was financially supported by the National Natural Science Foundation of China (Grant #41273072 to XL and Grant #41225007 to CW).

References

Abraham K, Flörke OW, Krumbhölz K (1971) Hydrothermalderstellung und kristaldaten von K₂TiSi₃O₉, K₂TiSiO₅, K₂Si₃O₇, K₂ZrSi₃O₉, und K₂O₄SiO₂·H₂O. Fortschr Mineral 49:5–7

Fateley WG, Dollish FR, McDevitt NT, Bentley FF (1972) Infrared and Raman selection rules for molecular and lattice vibration: the correlation method. Wiley Interscience, New York, p 222

Henage LF (1972) A definitive study of the origin of lamproites. MSc Thesis, Univ Oregon

Prider RT (1939) Some minerals from the leucite-rich rocks of the west Kimberley area, Western Australia. Mineral Mag 25:373–387