High-pressure synthesis, crystal structure and photoluminescence properties of a new terbium silicate: Na$_2$Tb$_{1.08}$Ca$_{2.92}$Si$_6$O$_{18}$H$_{0.8}$†

Xinjian Bao,abc Xiaoyang Liu$^{b, c}$ and Xi Liu*$_{ab}$

The crystal properties of a terbium silicate Na$_2$Tb$_{1.08}$Ca$_{2.92}$Si$_6$O$_{18}$H$_{0.8}$ synthesized at 1 GPa and 800 °C using a piston-cylinder apparatus is reported. Our single-crystal X-ray analysis shows that this new compound is triclinic with the space group $P1$ ($Z = 1$), and its unit-cell parameters are $a = 7.056(3)$ Å, $b = 7.075(3)$ Å, $c = 8.029(3)$ Å, $\alpha = 102.381(5)^{\circ}$, $\beta = 95.387(6)^{\circ}$, $\gamma = 90.552(6)^{\circ}$, and $V = 389.6(2)$ Å3. This structure consists of octahedral double chains of the compositions [Ca$_{0.875}$Tb$_{0.125}$O$_6$] and [Ca$_{0.585}$Tb$_{0.415}$O$_6$]. The double chains are linked by tetrasilicate chains via vertex oxygen atoms to form a 3D framework with 6-membered (2 octahedra and 4 tetrahedra) ring channels along the b-axis where the Na$^+$ cations locate. The luminescence properties of the Na$_2$Tb$_{1.08}$Ca$_{2.92}$Si$_6$O$_{18}$H$_{0.8}$ phase are also investigated. This phase, with most of its Tb in 3+, emits mainly from one transition, 5D$_{4}$ → 7F$_{5}$ (542 and 552 nm). The room temperature fluorescence decay curves are fit well by an exponential function, yielding a lifetime value of about 2.498(7) ms.

1. Introduction

Microporous lanthanide-containing silicates constitute a novel family of zeotype materials made of interlinked octahedra and tetrahedra. Many studies have focused on the synthesis of this group of compounds for their versatility in terms of chemical compositions, framework topologies and ion-exchange properties, as well as their interesting physical and chemical properties. Due to their high thermal stability and tunable optical properties, the lanthanide-containing silicates attract much interest as candidates of optical materials. In 1997, Rocha et al. reported a microporous sodium yttrium silicate Na$_4$K$_2$Y$_2$Si$_{16}$O$_{38}$·10H$_2$O. Since then a series of microporous lanthanide silicates have been successfully prepared. Recently, many studies have focused on the possibility to obtain phosphors with emission across the entire visible range by selection of lanthanide ions. Due to their high thermal stability and tunable optical properties, the lanthanide-containing silicates attract much interest as candidates of optical materials. In 1997, Rocha et al. reported a microporous sodium yttrium silicate Na$_4$K$_2$Y$_2$Si$_{16}$O$_{38}$·10H$_2$O. Since then a series of microporous lanthanide silicates have been successfully prepared. Recently, many studies have focused on the possibility to obtain phosphors with emission across the entire visible range by selection of lanthanide ions.

High-pressure (HP) experimental techniques have been usually employed in synthesizing the lanthanide-containing silicates in recent decades. As a few examples, Huang et al. documented the HP synthesis of a new europium silicate Cs$_3$EuSi$_6$O$_{15}$, which consists of loop-branched vierer double chains of silicate with four-, six-, and eight-membered rings; Zhao et al. reported the HP synthesis of three new lanthanide silicates based on anionic silicate chain, layer, and framework. Liu’s group synthesized a number of lanthanide-containing silicates under HP conditions and reported their structural features.

In this work a new terbium silicate, Na$_2$Tb$_{1.08}$Ca$_{2.92}$Si$_6$O$_{18}$H$_{0.8}$, was synthesized at HP condition using a piston-cylinder apparatus. The crystallographic details of this phase were obtained by performing single-crystal X-ray diffraction analysis, and the luminescence properties were systematically investigated using a range of analytical techniques as well.

2. Experiment

2.1. Synthesis

The starting material was made as following: pure chemicals NaOH·H$_2$O (Alfa Aesar, powder, 99.9%), TbCl$_3$·6H$_2$O (Alfa Aesar, powder, 99.9%), CaCO$_3$ (Alfa Aesar, powder, 99.9%) and SiO$_2$ (Alfa Aesar, powder, 99.9%) were weighed without any pretreatment, ground and homogenized in an agate mortar. This mixture was subsequently stored in a drying oven at 110 °C for later synthesizing experiment. The molar ratio of these chemicals in the starting material was ideally NaOH·H$_2$O : TbCl$_3$·6H$_2$O : CaCO$_3$: SiO$_2$ = 2 : 1 : 3 : 6, leading to ~11.9 wt% CO$_2$ and 11.32 wt% H$_2$O in the bulk composition. The starting material was loaded into a Pt capsule, which was sealed at both ends using an arc-welding technique. Our synthesizing experiment was carried out with a piston-cylinder apparatus (Depths of The Earth Company Quickpress). The experimental assembly and high-P experimental technique were...
An initial structure solution was obtained. The Na, Tb, Ca, and Si atoms were synthesized at 1 GPa and 800 °C with a heating time of 24 hours. After the reaction, the sample was quickly cooled down to room temperature by switching off the electrical power supply. Some parts of the resulting sample were crushed, then treated with diluted HCl to remove any possible residues of carbonate and hydrate, and finally washed with deionized water for further test.

2.2. Characterizations
Powder X-ray diffraction (XRD) data were collected using a Rigaku D/Max 2550 V/PC X-ray diffractometer with graphite-monochromated Cu Kα radiation (λ = 0.15418 nm) at 50 kV and 200 mA at room temperature. Energy-dispersive spectrometry (EDS) analysis was carried out using an EDS system attached to a JEOL JXA-8100 electron microprobe. The instrument was calibrated using a series of standards from Structure Probe, Inc. XPS valence band spectra were obtained with an ESCA LAB 230 photoelectron spectrometer. IR spectrum was recorded on a Nicolet Impact 410 FT-IR spectrometer using the KBr pellet technique. Thermogravimetric analysis (TG) was carried out on a Perkin-Elmer TGA unit in air with a heating rate of 10 °C min⁻¹. Photoluminescence (PL) spectra were obtained on a F7000 (Hitachi) spectrophotometer with Xe 900 (150 W xenon arc lamp) as the light source. PL decay curves were measured on an FLS980 spectrophotometer (Edinburgh Instruments) with an mF90H flash lamp as the light source. To eliminate the second-order emission from the source radiation, a cut-off filter was used during the measurement. Slit widths were 0.20 (excitation) and 0.20 (emission) nm. All spectra were recorded at room temperature.

2.3. Single-crystal X-ray diffraction
Suitable single crystal was selected for single-crystal X-ray diffraction analysis. Intensity data was collected on a Bruker Smart ApexII Quazar micro-focused diffractometer using Mo Kα radiation (λ = 0.71073 nm). The raw data was processed and corrected for the absorption effects using SAINT+ and SADAB. An initial structure solution was obtained via direct methods and refined by a full-matrix least-squares method using the SHELXTL software included in the SHELXTL package. All heavy atoms (Na, Tb, Ca, and Si) were first located unambiguously in the Fourier maps, and then the O atoms were found in the subsequent difference maps. All atoms were refined with anisotropic displacement parameters. The final cycles of the least-squares refinement including atomic coordinates and anisotropic thermal parameters for the atoms [I > 2σ(I)] converged at R₁ = 0.0502, wR₂ = 0.1186, and S = 1.015 for this new terbium silicate compound.

3. Results and discussion
3.1. Phases in synthetic material
The SEM backscatter image shown in Fig. S1† indicates that there is just one crystalline phase in our synthetic product, in good agreement with our powder XRD data. The powder XRD pattern of the experimental product is shown in Fig. 1; since it is completely consistent with the simulated XRD pattern based on our single-crystal structure data (to be reported in the next Section), one crystalline phase in the experimental product is the only possible explanation. In addition, Fig. S1† reveals significant amount of holes and cracks in the sample, suggesting the role of a C–H–O fluid phase in our experiment; note that there was ~23.22 wt% CO₂ and H₂O in the starting material. Ten EDS analyses performed on arbitrarily selected areas of the experimental product suggest a cation ratio of Na : Tb : Ca : Si = 2 : 1.08 : 2.92 : 6, slightly different from the original and ideal cation ratio of Na : Tb : Ca : Si = 2 : 1 : 3 : 6 in the bulk composition. This compositional difference partially reflects a possible drawback of using untreated chemicals to
prepare the starting material, and partially implies that the C–H–O fluid was not pure, but dissolved some Na, Ca and Si.

Combined with the single-crystal structure data, XPS data, FT-IR data and TG data reported below, the composition of this crystalline phase has been approximated by the chemical formula of Na₂Tb₁.₀₈Ca₂.₉₂Si₆O₁₈H₀.₈.

3.2. Single-crystal structure

The single-crystal analysis of the Na₂Tb₁.₀₈Ca₂.₉₂Si₆O₁₈H₀.₈ silicate reveals that it crystallizes in the P1 space group (Z = 1), with a = 7.056(3) Å, b = 7.075(3) Å, c = 8.029(3) Å, α = 102.381(5)°, β = 95.387(6)°, γ = 90.552(6)°, and V = 389.6(2) Å³ (Table 1). Each asymmetric unit of this new terbium silicate compound contains one distinct Na site, two distinct Ca(Tb) sites (denoted as M1 and M2), three distinct Si site and nine distinct O sites (Fig. S2†), with their coordinates and equivalent isotropic displacement parameters being listed in Table S1.†

This novel Na₂Tb₁.₀₈Ca₂.₉₂Si₆O₁₈H₀.₈ compound has a 3D-framework structure (Fig. 2). Two distinct [MO₆] octahedra form edge-sharing double chains running along the b-axis. The [SiO₄] tetrahedron in the crystal structure is linked to two adjacent [SiO₄] tetrahedra, these three symmetrically independent [SiO₄] tetrahedra form a C-shaped cluster, and neighboring C-shaped clusters are linked via sharing O atoms to form a zigzag chain along the b-axis. The tetrahedral chain is linked to the double chains of the [MO₆] through corner-sharing. The stacking pattern along with the linkages between the layers of tetrahedra and octahedra gives rise to an I-beam topology where bands of the octahedra are linked to overlying and underlying silicate chains through the apical O atoms in the [SiO₄] tetrahedra. The resulting framework contains 4-membered and 6-membered ring channels along the b-axis, where the H and Na cations locate, respectively.

The Ca and Tb atoms are disordered over the M1 and M2 sites with different occupancies. In the M1 and M2 sites, the Ca occupations are 0.875 and 0.585, respectively. The corresponding structural formula is thus Na₂[Tb₀.₆₂Ca₁.₃₈]Si₆O₁₈H₀.₈. As shown in Fig. 2 and Table S2,† all the M sites are coordinated to six bridging O atoms to form [MO₆] octahedra. For the M₁O₆, the lengths of the six M₁–O bonds lie between 2.295(⁸) to 2.491(⁸) Å while the O–M₁–O angles from 79.4(₃) to 167.₉(₃)°.

For the M₂O₆, the M₂–O band lengths are in the range from 2.28₁(⁷) to 2.47₄(⁸) Å while the O–M₂–O angles from 80.₈(₃) to 176.₆(₃)°. The Tb atoms on these two sites have mixed valences, with the Tb⁺³ dominant: the XPS spectrum (Fig. S3†) shows two main peaks at ~148.₁₁ and 150.₂₁ eV, which are attributed to the Tb⁺³ and Tb⁴⁺, respectively; the ratio of Tb⁺³ : Tb⁴⁺ has been calculated as ~0.₁₉₄ by performing peak-area analysis.₂₂ On the basis of charge balance, furthermore, the XPS data imply ~₀.₇ H in the unit cell of the crystal structure.

The Si atoms are all in 4-fold coordination, and form [SiO₄] tetrahedra. The Si–O lengths vary from 1.₆₀₁(₈) to 1.₆₄₇(⁸) Å for the Si₁–O bonds, from 1.₅₇₇(₈) to 1.₆₄₇(⁸) Å for the Si₂–O bonds, and from 1.₅₉₃(₇) to 1.₆₆₆(⁷) Å for the Si₃–O bonds. The O–Si–O angles are shown in Table S2.†

Fig. 2 Polyhedral view of the Na₂Tb₁.₀₈Ca₂.₉₂Si₆O₁₈H₀.₈ compound along the b-axis and [SiO₄] tetrahedra single chain.

3.3. Photoluminescent studies

Fig. 3 shows the room temperature excitation spectra of the Na₂Tb₁.₀₈Ca₂.₉₂Si₆O₁₈H₀.₈ phase, monitored within the

Fig. 3 shows the room temperature excitation spectra of the Na₂Tb₁.₀₈Ca₂.₉₂Si₆O₁₈H₀.₈ phase, monitored within the...
Tb$^{3+}$ $^5D_4 \rightarrow 7F_5$ transition (542 nm). In the excitation spectrum, the sharp lines between 320 and 500 nm are assigned as the intracongurational 4f8 transitions of the Tb$^{3+}$ between the 7F_6 ground state and the $^5D_{0,1}$, $^5G_{2,3,4}$ excited levels. On the other hand, the broad feature between ~240 and 320 nm may be contributed by both the spin-forbidden and spin-allowed intercongurational 4f8/4f75d (f–d) transitions of the Tb$^{3+}$; specifically, the bands at ~275 nm can be assigned to the spin-allowed 7D levels of the 4f8 → 4f75d transition while the bands at ~300 nm can be assigned to the spin-forbidden 9D levels of the 4f8 → 4f75d transition of the Tb$^{3+}$ ions.

Fig. 4 shows the RT emission spectrum of the Na$_2$Tb$_{1.08}$Ca$_{2.92}$Si$_6$O$_{18}$H$_{0.8}$ phase. The emission spectrum excited at 378 nm (Tb$^{3+}$ 5D$_3$) displays a series of sharp lines from 475 to 675 nm, which are associated with the $^5D_4 \rightarrow 7F_5$ transitions of the Tb$^{3+}$, with the strongest at about 542 and 552 nm ($^5D_4 \rightarrow 7F_5$). No apparent emission from the Tb$^{4+}$ ion is expected in this range due to the charge transfer. Luminescence from any higher excited states (e.g., 5D_3) is very weak. The peak at 436 nm is assigned to the transition $^5D_4 \rightarrow 7F_3$. Other potential emissions with origins from the 5D_4 to 7F_3 transitions of the Tb$^{3+}$ ions are not detected due to the cross-relaxation effect.

The RT fluorescence decay curve of the $^5D_4 \rightarrow 7F_5$ transitions (542 nm) for the Na$_2$Tb$_{1.08}$Ca$_{2.92}$Si$_6$O$_{18}$H$_{0.8}$ phase (Fig. 5) is well fitted by the single exponential function, yielding the lifetime value of $\tau = 2.498(7)$ ms, which is in good agreement with the reported value for the Tb$^{3+}$ emission.

4. Implication

Rare earth element-doped chain silicates, such as the MSiO$_3$ (M = Mg, Ca, Sr, Ba) solid solutions, form a very important group of photoluminescence materials, with different M-site cations leading to different photoluminescence spectra. Furthermore, there are usually multiple M sites in these silicates. When these M sites are occupied by different rare earth elements, different luminescence properties are resulted in. In the case of the Eu$^{2+}$-doped NaScSi$_2$O$_6$–CaMgSi$_2$O$_6$ solid solutions, as an example, the color-tunable photoluminescence feature was ascribed to the different local M-site environments of the Eu$^{2+}$. Accordingly, it’s important to investigate the rare earth element distribution on the M sites. In this study, we have analyzed the Tb distribution of the chain silicate Na$_2$Tb$_{1.08}$Ca$_{2.92}$Si$_6$O$_{18}$H$_{0.8}$ on its different M sites using single-crystal data. Combined with the BVSSs, the valences of the Tb have been constrained as well. On the other hand, it remains to be explored whether the structure of this new phase, plus its optical properties, has strong dependence on the substitution between Tb and Ca on the M sites. We believe that the result reported here should stimulate further research on rare earth element-doped silicate photoluminescence materials.

5. Conclusions

In summary, a new microporous compound, with the composition of Na$_2$Tb$_{1.08}$Ca$_{2.92}$Si$_6$O$_{18}$H$_{0.8}$ and a novel 3-D framework, has been synthesized under HP conditions. The structure of this phase can be viewed as made of some [MO$_6$] polyhedron double chains and zigzag [SiO$_4$] tetrahedron single chains. The [MO$_6$] polyhedron double chains, in parallel to the b-axis, are connected by neighboring SiO$_4$ tetrahedron via vertex oxygen atoms to form a three-dimensional framework. This new phase
contains large 6-membered ring channels along the b-axis direction, which are delimited by the [SiO₄] tetrahedra and [MO₆] polyhedra. Its photoluminescence studies are consistent with the crystallographic results, suggesting a strong green emission and a lifetime value of 2.498(7) ms. The successful synthesis of this new terbium silicate under HP conditions and the research on the rare earth element distribution on the M sites will stimulate further study on the lanthanide silicates with novel structures and useful optical properties.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This study was financially supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB18000000), by the DREAM project of MOST, China (Grant No. 2016YFC0600408), and by the Program of the Data Integration and Standardization in the Geological Science and Technology from MOST, China (Grant No. 2013FY1109000-3).

Notes and references